/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

\
P

/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

On the Chapman-Kolmogorov Equation
J. F. C. Kingman

Phil. Trans. R. Soc. Lond. A 1974 276, 341-369
doi: 10.1098/rsta.1974.0025

Email alerting service Receive free email alerts when new articles cite this article - sign up in the box at
the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to: http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1974 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;276/1259/341&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/276/1259/341.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

'\
A

THE ROYAL A
SOCIETY /%

~d
)|

PHILOSOPHICAL
TRANSACTIONS
OF

A
N \
JA
AL A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

[ 341 ]

ON THE CHAPMAN-KOLMOGOROV EQUATION

By J. F. C. KINGMAN, F.R.S.
Mathematical Institute, University of Oxford

(Received 19 September 1973)

CONTENTS
PAGE PAGE
1. SEMIGROUPS OF POSITIVE MATRICES 341 3. APPLICATIONS TO M-SEMIGROUPS 357
1.1. Introduction 341 3.1. Taboo semigroups 357
1.2. Semi-p-functions 343 3.2. Properties of submatrices of
1.3. The main results 345 M-semigroups 360
2. THE THEORY OF SEMI-P-MATRICES 347 3.3. Property M 362
2.1. Definition 347 3.4. The localization principle 367
2.2. The taming theorem 348 REFERENCES 369
2.3. The structure theorem 351
2.4. Decompositions 355

In the form considered in this paper, the Chapman-Kolmogorov equation connects a doubly infinite
collection of functions, and imposes complex constraints on each of them. The main theorems charac-
terize the functions which satisfy these constraints, and generalize known results in the theory of
continuous-time Markov chains.

1. SEMIGROUPS OF POSITIVE MATRICES
1.1. Introduction
The starting-point of this paper is the equation

pis(s+1) = ,\Elpik(s)pkj(t) (t,yel; st > 0), (1.1.1)

where [ is a countable set and, for each 4, j in I, p;; is a positivet Lebesgue measurable function
on the half-line (0, 00). This is often called the Chapman—Kolmogorov equation, after the late
S.Chapman, F.R.S., who used a continuous version of it in (Chapman 1928), and A.N.
Kolmogorov, For.Mem.R.S., in whose hands it first revealed its depth and subtlety.

Collections of functions satisfying (1.1.1) are central to the theory of continuous-time Markov
chains, in which context they have been studied for many years. In that theory (of which the
best account is by Chung (1967)) it is usual to impose the additional condition

X pyt) <1 (iel;t > 0), (1.1.2)
jel

and most of the methods used depend in an essential way on this condition.

+ Throughout this paper the words positive, negative, increasing and decreasing are to be understood in the
weak sense unless preceded by the adverb strictly. Thus x is positive if x > 0, and strictly positive if x > 0.
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342 J.F. C. KINGMAN

It was, however, pointed out by Jurkat (1959, 1960) that many of the results of the Markov
theory could, with ingenuity, be proved without recourse to (1.1.2). He assumed the continuity
condition

Eg)lﬁu(t) = 0y (1.1.3)
(where 8;; = 1 or 0 according as ¢ = j or 7 = j) and showed, for instance, that the functions p,;
are continuously differentiable in (0,00). His programme was continued by Chung (1963),
who (in theorem 10.1) established in full generality the Lévy dichotomy: each function p;; is
either strictly positive or identically zero on (0, o).

Recent work of Cornish (1971) has shown that Jurkat’s continuity condition (1.1.3) represents
no real loss of generality. He shows that, unless there exists a € [ with

bia=0 foralli or p,; =0 forally, (1.1.4)

then there are positive numbers o, f; (i€1), a function f from I on to a set 7, and a collection of
functions (p;;; i,j€ ) satisfying (1.1.1) and (1.1.3), such that

Di(t) = % BiPro ) (8)- (1.1.5)

Hence the study of (p;;) reduces to that of the system (f,;), for which the continuity condition
(1.1.3) is available. Moreover, if there are anomalous elements satisfying (1.1.4), these may be
removed from I without affecting (1.1.1) (and then correspond to ‘entrance’ or ‘exit’ laws
(Neveu 1961) for the reduced collection). Hence in the present analysis (1.1.3) will be assumed
without further comment.

The Chapman-Kolmogorov equation asserts, in effect, that if the functions p;; are arranged
in a matrix

P(t) = (pij(t);i’jel)y (1.1.6)
then P(s+1t) = P(s) P(t) (s,t>0), (1.1.7)

so that the P(¢) form a one-parameter semigroup of (finite or infinite) positive matrices. If
such a semigroup satisfies (1.1.1), (1.1.2) and (1.1.3) it is usually called a Markov semigroup;
if it is only known to satisfy (1.1.1) and (1.1.3) it will here be described as an M-semigroup.
Thus Jurkat’s contribution was to show that a number of the results known to be true of Markov
semigroups hold also for the more extensive class of M-semigroups.

This observation is important from the purely mathematical point of view, not least because
the form of (1.1.3), despite its natural probabilistic meaning, is rather artificial. It means, for
example, that the transpose of a Markov semigroup (obtained by interchanging ¢ and ) is not,
in general, a Markov semigroup, and the theory is thereby robbed of a natural duality. But
there are also practical reasons for eschewing (1.1.2). For example, the theory of continuous-
time multitype branching processes (Harris 163, § V. 15) gives rise to expectation matrices
forming M-semigroups which are not usually Markov semigroups.

On the other hand, many M-semigroups can be turned into Markov semigroups by a simple
transformation. It was shown in Kingman (1963) that, if an M-semigroup is irreducible in the
sense that none of its functions p,; vanishes identically, and if there is a constant / such that, for
some i,

pii(t) = 0(e”) (1.1.8)
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as ¢ - oo, then there are positive numbers x; (i€ ) such that the functions

Bi(t) = e pyy(t) x5/, (1.1.9)
form a Markov semigroup. We say that such semigroups are fame, and it is clear that M-
semigroups are only really different from Markov semigroups when they are wild in the sense
that no transformation of the form (1.1.9) makes them satisfy (1.1.2).

An important technique in the theory of Markov semigroups is the Hille-Phillips theory of
one-parameter semigroups of operators (Hille & Phillips 1957; Kendall & Reuter 1954). This
can be applied to M-semigroups if, but apparently only if, they are tame in the sense just defined.
A theory of infinitesimal generators of wild M-semigroups is not at present available, but would
be of great interest.

When Iis finite, a simple argument shows that all M-semigroups are tame. When Iis countably
infinite, on the other hand, the existence of wild M-semigroups was established by Cornish (1971),
who produced examples to show that p;;(f) could be made to increase, as ¢ — oo, faster than any
given function of ¢. Further examples may be found in Kingman (1973).

The object of this paper is to examine M-semigroups, and more especially the functions p;;
of which they consist, from the point of view used in Kingman (1972) to analyse the Markov case.
Jurkat’s results will not be assumed, since they emerge naturally as by-products of the present
development. Indeed, the only result required from the existing literature on M-semigroups
(apart from the Cornish apologia for (1.1.3) already quoted) will be the Lévy dichotomy, in
the form proved by Chung (1963).

1.2. Semi-p-functions

The classical theory of Markov semigroups contains many results which bear upon the
properties of the individual functions p;;, and these taken together strongly suggest the problem
of characterizing such functions. This problem has two aspects, since the behaviour of p;; is
quite different when i = j from that when ¢ # j (witness (1.1.3)). Both were resolved in Kingman
(1971), although the result is more satisfactory in the diagonal case ¢ = j, for which it gives
an effective algorithm, than in the non-diagonal case ¢ # j. To what extent can these results be
generalized to M-semigroups?

Confining attention for the moment to the diagonal problem, we therefore have the following
general question:

Given a function p: (0,00) —> [0, 00), under what conditions on p does there exist an M-semigroup and
an index ¢ such that p,;(t) = p(t) for all t > 0?

This question will be answered by generalizing the techniques used to resolve the corre-
sponding problem for Markov semigroups (of which there is a connected account in Kingman
(1972)). For brevity, a function expressible in the form p,; in some M-semigroup will be said to
enjoy property M.

The first step in characterizing functions with property M is to notice that, in any M-semigroup,
the function p;; (for fixed iel) satisfies certain inequalities which flow from the Chapman-
Kolmogorov equation, together with the positive character of (the elements of) the matrix
P(t). The simplest of these comes from setting j = ¢ in (1.1.1), so that

pii(s+1) =k§1ﬁik<s) Dri(t) > pui(s) pis(2).-
Hence a necessary condition for a function p to have property M is that

pls+1t) = p(s)p(t) (s, > 0). (1.2.1)
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Another necessary condition, this time from (1.1.3), is that
ingp(t) =1, (1.2.2)
and it should be noted that these together imply that
p(t) >0 (¢>0). (1.2.3)
The inequality (1.2.1) is the first of an infinite family which may be generated as follows. Let
0=t <t <t<.. (1.2.4)

Jn = Zpu () broyey(ta— 1) eeebr,_ i(t—tus), (1.2.5)

where the summation extends over all £y, &, ..., k,_; not equal to . Had the summation extended
over all ky, kg, ..., k,_4, the result would (by n—1 applications of (1.1.1)) have been p(t,).
Now this latter sum could be split up into n subsums X}, 2, ..., 2, where X, extends over all
kyykosoooskp_qy with ky, ko .ok, 3 #+ ¢ and £, = ¢, and clearly

):r =\f;2pilcr+1(tr+l - tr) plc,q lkﬂ z(tr+2 - tr+1) . 'pkn_li(tn - tn—l)
=f;-pii(tn - tr)'

and write (for n > 1)

Hence, for allz > 1,

pisltn) = Téfrﬁii(tn —t,). (1.2.6)

If the sequence (1.2.4) is fixed, (1.2.6) may be solved for f, in terms of the values of p,;; by
Cramer’s rule

. Jn =F(tl,t2)'°':tn;pii)a (1.2.7)
where F is defined by
b(t) 1 0 0 0
p(ts)  plta—1t) 1 0 0
F(ty by, o ta3p) = (= 1)"71) pta)  pts—t1)  plts—1s) 1 0 . (1.2.8)

...............................................................

It is evident from (1.2.5) that f,, > 0, so that a necessary condition for a function p to have

property M is that :
Flly by eonty;p) =20 (n=1,2,3,...) (1.2.9)

for any sequence of the form (1.2.4). The case n = 1 is trivial, while n = 2 is a restatement of
(1.2.1).
Functions satisfying (1.2.9) together with the inequality

n‘_‘_“lF(tl,tz,...,tn;p) <1 (1.2.10)
have been studied under the name of p-functions, and their theory is described in detail by
Kingman (1972). In the present context (1.2.10), which is a consequence of (1.1.2), is not
available, and we must be content with (1.2.9) alone. A function satisfying (1.2.9) is called a
semi-p-function, and such functions have been considered by Kingman (1973). The theory of
semi-p-functions is inevitably more difficult than that of p-functions, for the same reason that
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it is difficult to cut a sheet of paper with one blade of a pair of scissors. The fundamental result
is that every semi-p-function satisfying (1.2.2) is the unique solution of the Volterra equation,

t
Mﬂ:l—ﬁf@—ﬂm@dg (1.2.11)

for some decreasing function m on (0, o) which is integrable on (0, 1). The function m is uniquely
determined by p except at its discontinuities, and every such function m determines a semi-p-
function.

A semi-p-function p is a p-function (that is, it satisfies (1.2.10) as well as (1.2.9)) if and only if
p(t) < 1forallt > 0, and this in turn is true if and only if m(¢) > 0 for all # > 0. Kingman (1973)
proves that every semi-p-function satisfying (1.2.2) coincides on every finite interval with the
product of a p-function and an exponential function. Hence the local properties of semi-p-
functions can at once be deduced from those of p-functions: for example, the semi-p-function
piscontinuous and has finite left and right derivativesin (0, o), which differ only on the countable
set of discontinuities of m, and the limit

}ir?, {1 —p(t)} = limm(t) < o0 (1.2.12)
exists. ” o

In what follows, the only semi-p-functions considered will be those satisfying (1.2.2), and this

condition will be assumed without further comment, as will the convention

p(0) = 1. (1.2.13)

1.8. The main results

A function having property M must be a semi-p-function, but (as examples from the Markov
case show) there are semi-p-functions which do not enjoy this property. Thus the characteriza-
tion problem remains, but the theory of semi-p-functions allows it to be thrown into a different
form. The Volterra equation (1.2.11) sets up a one-to-one correspondence between the class
of semi-p-functions p and the class of right-continuous, decreasing, locally integrable functions m.
It will be shown in theorem VII that, in this correspondence, those semi-p-functions having
property M correspond exactly to those functions m for which there exists a lower semicontinuous
function £ with

t
mg_mn=fu@m, (1.3.1)
8
where £ is either identically zero or is strictly positive and satisfies
h(x) > e=#® (1.3.2)

for some constant # and all sufficiently large «.

This result is a complete solution of the problem posed at the beginning of § 1.2, although the
intervention of the Volterra equation can raise difficulties in applying the result, as indeed it
does in the Markov case (cf. Kingman 1972, ch. 6). It has one very important corollary: if
a function p has property M, and if T" > 0, then there is a tame M-semigroup with

pu(t) =p(t) (0<t<T)
for some :. Since tame semigroups are virtually within the scope of the classical Markov theory,

this means that local properties of the diagonal elements of M-semigroups follow at once from
the corresponding results for Markov semigroups.
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This ‘localization principle’ has a far-reaching generalization which, among other things,
enables the local properties of the non-diagonal elements of M-semigroups to be deduced fromn
the Markov theory. Theorem X asserts that, if P(f) = (p;(t);%,j€1) is an M-semigroup, 7" > 0,
and Jis a finite subset of 7, then there exists a Markov semigroup P(¢) = (5;(¢);4,j€l) and a con-
stant & such that

pi(t) = by(t) et (i,jeJ;0<t< T). (1.3.3)
Thus, in order to discover whether an M-semigroup is wild, it is necessary to know about p,;(¢)
either for infinitely many pairs (¢,7), or for arbitrarily large values of ¢. No finite submatrix of
P(t), observed on a finite interval of ¢-values, contains the seeds of wildness.

In order to establish these results, the essential tool is the concept of a semi-p-matrix. This
generalizes both the idea of a p-matrix (Kingman 1965) and that of a semi-p-function; the

diagram
p-function — semi-p-function

p-matrix — semi-p-matrix

in which the arrows denote increasing generality, summarizes the situation. A structure theorem
for semi-p-matrices (theorem II) is proved, and used to establish the decompositions necessary
to prove the deeper properties of functions with property M. That these properties are necessary
is the content of theorem VI; that they are also sufficient is asserted in theorem VII.

The most important example of a semi-p-matrix is a finite principal submatrix of an M-
semigroup, and theorem VIII generalizes theorem VII by characterizing those semi-p-matrices
which can arise in this way. The localization principle follows, with its consequences for the
non-diagonal elements of M-semigroups.

In Kingman (1965) I suggested a classification describing the relative depth of results about
the elements of Markov semigroups, and this too extends in a natural way to M-semigroups:

Type I. Results which follow from the fact that p,; is a semi-p-function (such as the existence
of right and left derivatives).

Type I1. Results which follow from the fact that, for ¢ # j, the matrix

pii(t) Pij(t)
(ﬁﬁ(t) pﬁ(t)) (1.3.4)

in a semi-p-matrix —such as the first passage and last exit decompositions (§ 2.4) and the existence

of the finite limit
Qi = gin(}ﬁw(t)/t- (1.3.5)

Type 111. Results which cannot be deduced from the theory of semi-p-matrices alone.

It is, of course, the existence of the deep type III results which makes the characterization
problem interesting and difficult. The most striking is Chung’s version of the Lévy dichotomy,
and another is Jurkat’s generalization of Ornstein’s theorem, which asserts the continuous dif-
ferentiability of p,; on (0, c0).

The culmination of this paper is the characterization theorem (theorem VIII) for principal
(N x N) submatrices of M-semigroups. Had we been content with the special case N = 1, for
which theorem VII is adequate, some of the deeper aspects of the theory of semi-p-matrices
could have been omitted. Specifically, only (2 x 2) semi-p-matrices need have been considered,
with a corresponding simplification of the decomposition theory of § 2.4, and the theory of taboo
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semigroups (§3.1) would not have been required. But as soon as properties of non-diagonal
elements are sought, the more general theory is essential.

Finally, a technical remark; the reader familiar with the Markov theory will recall its heavy
dependence on Laplace transform techniques. These are not available in the present context,
since an element of a wild M-semigroup typically has a nowhere convergent Laplace transform.
This inconvenient fact means that transform manipulations must sometimes be replaced by less
transparent, if more direct, calculations. Their structure may sometimes be more readily
appreciated by an illicit formal application of the Laplace transform.

2. THE THEORY OF SEMI-P-MATRICES
2.1. Definition
Let P(t) = (py(t);1,j€l) be an M-semigroup with index set I, and let J = {x;, x, ..., x,,} be
a finite subset of I. For each ¢ > 0, let p(t) denote the corresponding principal submatrix of P(¢):
P(1) = (puyoy ()3 65 = 1,2,..., N). (2.1.1)
Then the (N x N) matrix-valued function p satisfies an infinite family of inequalities which
reduce to (1.2.9) when N = 1.

For any sequence (1.2.4) and any 7, jin 1 < 7, § < N, write

f;n'j = Zpatiyl(tl) pyl'yz(t2 - tl) .. 'pyn_z z/n..l(tn—l - tn—2) pyn_laxj(tn - tn—l)s (2' 1‘2)

where the summation extends over yy,¥s, ...,4,_1¢J. Then the argument leading to (1.2.6)
generalizes in an obvious way to give, for z > 1,

N n
px,w,(tn) = Z Eﬁikﬁ?jkwj(tn_tr)9 (2'1'3)
: k=1r=1
n
or in matrix notation p(t,) = X fp(t,—t), (2.1.4)
r=1
with the convention that p(0) =1, (2.1.5)

the identity matrix of order N. Writing (2.1.4) in the form

n-—1
I ==P(tn) "‘r_zlf'rp(tn_tr) (n = 1)9
it determines f;, f5, f3, ... recursively in terms of the values of p:

Fo = Fty,ty, ooy tn; D). (2.1.6)

The precise form of F is not of importance for the present argument, but it is in fact easy to

verify that N .
Fltyty sty p) = £ (=% % TIplly=ta). (2,17

k=1 O=a,<oy<...<agp=nl=1

Alternatively, the determinantal expression (1.2.8) continues to hold, with p replaced by p, F
by F and 1 by I, so long as the products implicit in the determinant are read in the order of
the columns.

From (2.1.2), f,:; = 0, and it follows that the matrix-valued function p defined by (2.1.1)

satisfies the inequalities
4 Fltyty ..oty p) >0 (n=1,2,3,..), (2.1.8)
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where inequalities between matrices (and likewise between vectors) are interpreted, as they will
be throughout this paper, element by element. In the Markov theory (Kingman 1965) there
is a reverse inequality generalizing (1.2.10):

z‘,l F(ty,tyyoosty; P)1 <1 (2.1.9)
n=

where 1 is the vector all of whose components are equal to 1. A funtion p from (0, 0) into the
space of (Nx N) real matrices which satisfies (2.1.8) and (2.1.9) for all sequences (1.2.4) is
called a p-matrix. If only (2.1.8) is known to hold, p is called a semi-p-matrix. Thus a finite principal
submatrix of a Markov semigroup is a p-matrix, and of an M-semigroup is a semi-p-matrix.
In this paper, all semi-p-matrices will satisfy (as does (2.2.1) because of (1.1.3)) the continuity

condition

limp(t) = 1 (2.1.10)
—0

and this, with the convention (2.1.5), will be assumed without further comment.

2.2, The taming theorem

In the theory of semi-p-functions (Kingman 1973) the key result is one which states that, on
every finite interval, a semi-p-function is indistinguishable from the product of an exponential
function and a p-function. This is also true (though rather more difficult to prove) for semi-p-
matrices.

THEOREM 1. Let p be a function from (0, co) into the space of (N x N) matrices, which satisfies (2.1.8)
and (2.1.10). Then, for any finite positive T, there exists a finite number o and a p-matrix p such that

pt) =p@t)et (0<t<gT). (2.2.1)
Proof. Setting n = 2 in (2.1.8) shows that

N
2ii(ts) = kgllfm(ﬁ)ﬁkj(tz —t) > pi(t) pis(ta—t) (2.2.2)

for 0 < ¢; < t,. Since p;;(¢) - 1as ¢ - 0, it follows on letting ¢, — ¢, — 0, first with ¢, fixed and then
with ¢, fixed, that p;; has right and left limits p,;(¢+) and p;;(¢—) at each ¢ > 0, and that
Di(t=) < py(t) < pi(t+). (2.2.3)
(See Jurkat (1959) for the details of this argument.) Now
0 < Fiyj(ty, b, U5 P)

N N N
= pii(ts) — ,El Pir(ty) brj(ta— ) — kglpik(t2) bri(ts—1s) + E Lir(ty) pra(ta—t1) prj(ts —t3).

k,1=1

Letting ¢, — ¢, we have
N
bi(ta+) —piy(ts) > ’Elﬁik(tl) {bri(ta—ti+) —pri(ta— 1)}
2 pu(t) {bi(ta—ti+) —py(ta— 1)} (2.2.4)

For any ¢ > 0, since p;; has only jump discontinuities, it is continuous off a countable set, and

hence we can choose t, > ¢ so that p;;(t,+) = p,;(,). Moreover, (2.2.2) with ¢ = j, combined
with (2.1.10), shows that p;; > 0. Hence (2.2.4) with t, = t,—¢ implies that py;(t+) = p;;(£).
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An exactly similar argument, starting by letting #; - #,, shows that p;(#) = p;;(t—). Hence p;;
is continuous in (0, o), and indeed in [0, ) because of (2.1.10) and (2.1.5).
Now consider the functions

t+1 N
#i(t) = Dpy(s)ds (1<i< N, t>0),
. i j=1

which are strictly positive (since p,; is) and continuously differentiable. Then the functions

11108 8:(T) —log 4(¢)
T—1¢

are bounded on [0, 7") and hence we may choose a positive number £ (depending of course onT")

so large that
bi(t) et > (T) e™* (2.2.5)

forall0 <t < Tandalll i< N.If

O=ty <t <lp<..<t,<T<sy,
then (2.1.4) shows that

r=1k=1
so that
N n N
T pi(s) =2 B X Fyby st P) prs(s— 1)
j=1 r=1k,j=1

Integrating from s = T'to s = T+ 1, we have

n N
$(T) > § ,ElFik(tb ooty P) Gi(T—1,)

r=1

n N
P 2 2 Fik(th ey tr; P) ¢k(T) e“'ﬁtr,
r=1k=1
using (2.2.5). Hence, if we define

Bislt) = bus(t) ,(T) e1$(T) (0 <1< T), (2.2.6)
and note that (2.1.7) implies that
F’ij(tl) AAE) tr:‘; p) = Fij(tl’ tey tr; P) ¢j(T) e‘ﬂtr/qﬁi(T), (2'2'7)
then 3 F(lyy .oty P) 1< 1 (2.2.8)
r=1

for any sequence (1.2.4) with ¢, < T.
Note that p has so far only been defined on [0. T'], and our next task is to extend its definition
to [0,0) in such a way that (2.2.8) holds even if ¢, > T. To do this, let z be a positive integer,

and write ~
Jii(r) = Fy(T[n, 2T, ...,rT[n; p),

) r N
gi(r) =1-3% X fi;(s), £(0) =1,
s=1j=1
for 1 <r < n,1<14,J5 < N, noting that (2.2.7) and (2.2.8) imply that
Jis(r) = 0, gi(r) > 0.

27 Vol. 276. A.
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350 J. F. C. KINGMAN

LetI={1,2,...,N}x{1,2,...,n}, and define a stochastic matrix

b = (ﬂ(i,r),(j,s); 1< 13] < N’ 1<rs< n)
on I by
T, Gren = &(1)[&:(r=1) (1<i< N, 1<r<n-1),
| <

T m Gy =Ji(1)[g(r—1) (1<4j< N, 1<r<n-1),

T, w), G, n) = 1 (1<i<N),
all other elements of IT being zero. (If it should happen that g;(s) = 0 for some s, then indeter-
minate expressions 0/0 may be given any values which leave ITstochastic.) Then an easy induction
on k shows that
(IT*)q,v,G3,0 = bi;(KT|N). (2.2.9)
It is a familiar fact, and easily verified, that for any stochastic matrix I7, and any positive
constant «, the expression

Py = § e

%
k=0 k! I

defines a Markov semigroup. Let k = n/ T, and consider the p-matrix, which since it depends on
will be written p,,, defined by (2.1.1) with x; = (7, 1). Then (2.2.9) shows that

© (Kt) k e—-Kt

(Pa(t)i; = k2=:0 A (IT%), 1,6,
(nt] T)* e—ntIT

n
=k§0 ;l pzj(kT/n) +4,
where 04« (nt] T)ke—*b7T [k}

k=n+1

A familiar approximation argument (cf. Kingman 1972, p. 36), using the continuity of p on
[0, T'], shows that
limp,(t) =p(t) (0<t<T), (2.2.10)
n—»o0
where limits of matrices are taken element by element.

Hence we have constructed a sequence of p-matrices p,, whose values converge, for each t < 7,
to those of p. Regard p,, as an element of the space 2 of functions from [0, co0) into the compact
space of (Nx N) matrices with elements in [0,1]. In its product topology £ is compact
(Tychonov’s theorem), and hence the sequence (p,,) has a limit point p*, and (2.2.10) shows that

p*(t)=p) (0<t<T). (2.2.11)
The functions
P HF(tl, toy eeeybns P)

are continuous with respect to the product topology on 2, and since p,, satisfies (2.1.8) and (2.1.9)
so does p*. Moreover, (2.2.11) shows that p* satisfies (2.1.10). Hence p* is a p-matrix ex-
tending p.

Applying the structure theorem for p-matrices (Kingman 1972, theorem 5.2), there are
measures 4 on (0,c0] and A on [0, c0) such that, for all 6 > 0,

[Zorwemnde= g0,
0
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where g5(6) = 6+ f( | (=) (),
g5(0) = — f LA (). (2.2.12)
Define Bult) = 150 8T e19(T), (2.2.13)

where the positive constant 7 is yet to be determined. Then
[, penar=qeq,
0

where 4:(0) = ¢55(0+7) ¢i(T)/¢i(T) (0 > 0).

The structure theorem then shows easily that p is a p-matrix if and only if

. N

lim ¥ ¢,;(0) > 0

0-0j=1
for all ¢ (this being just another way of writing (5.2.5) of Kingman (1972)), or equivalently if
and only if

N
j§1 75(v) $:i(T) = 0.
It is clear from (2.2.12) that this is true for sufficiently large v —for instance,
Y = % 2310,) (1) ).

For such a choice of y, (2.2.6), (2.2.11) and (2.2.13) show that (2.2.1) holds with a = g+,
and the theorem is proved.

Theorem I shows, of course, that the local properties of elements of semi-p-matrices follow
from those of p-matrices. To take just one example, the fact, for i # j, that the finite limit

955 = lti_fgpif(t)/t (2.2.14)

exists for any p-matrix (Kingman 1972, theorem 5.5) implies that the same is true for any
semi-p-matrix, and therefore, for any M-semigroup.

2.3. The structure theorem

Kingman (1973) uses the taming theorem for semi-p-functions to set up a structure theory
generalizing that of p-functions. In the same way, theorem I allows a structure theory for semi-p-
matrices to be derived from that of p-matrices. To do this, it is convenient to write the Volterra
equation (1.2.11) in the equivalent form

p(t) = 1+f:[)(t—s) k(s) ds, (2.3.1)

where k() = —m(¢—) is left-continuous, increasing and integrable on (0, 1).
Convolutions like that occurring in (2.3.1) will be denoted by %, so that the Volterra equation
becomes
p=1+pxk.
We shall use without comment the associativity and commutativity of %, though remembering
that convolutions of matrix-valued functions are not in general commutative.

27-2
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352 J. F. C. KINGMAN

‘Tueorewm IL. If p is any semi-p-matrix of order N, there exists a unique matrix-valued function

k(t) = (k;(0);4,7=1,2,...,N) (t>0) (2.3.2)
such that '

(i) k;; is increasing and l.«;ft—contmuous in (0, c0),
(it) kw(t) Ofort> 0,1 % j,
(iii) f |k:5(8)| dt < o0, and
0
(iv) the matrix Volterra equations

plt) = I+f:k(s)p(t~s) ds, (2.3.3)

2(0) = 1+ [ p1=5) k(5) ds (23.3%)
hold for all t > 0. Conversely, if k is any function satisfying (i), (ii) and (iii), then (2.3.3) (and (2.3.3%))
has a unique solution p, which is a semi-p-matrix.

Proof. Let p be a semi-p-matrix, and 7" > 0. Invoke theorem I to choose a number « and a

p-matrix p such that
p@) =p()et (0<t<T), (2.3.4)

and use the structure theorem for p-matrices (Kingman 1972, theorem 5.2) to write

[ perar=qo (©>0),

4:i(0) = 0+ f (1 - e=02) uy(dlx),

(0, ]

0l0) == [ eyl (i +))
where , is a measure on (0, co] with o

f (1 -2 py(dlx) < oo,
(0, ]

and A;; a totally finite measure on [0, ). Define k() by

k(1) = — pilt, o],
Riy(t) = 2[0,0) (i +),
and verify that k satisfies (i), (ii) and (iii). For 6 > 0,

f 0°° F(1) e-0t dt = —6-1{q(0) — OI),

0-11 = fp —‘%dt: fwl%()e—"tdt}
{ f k(1) e—“dt}f p(t) et dt,

and inversion of the Laplace transforms (with the use of the continuity of p and the left-continuity
of k) shows that (2.3.8) and (2.8.3*) hold with p replaced by p and k by k.
Now define

so that
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Then k, is left-continuous and increasing, since it is easily checked that, for 0 < ¢; < #,,

bt —ko(t) = [ cdk) > 0.
Fori + j, R
| (Ryp(t) s = f [O,t)eat/\if(dt) =0,
while for ¢ < 1,
(a(1) = ko) = [ e=mla),

so that ky, satisfies (i), (ii) and (iii). Moreover, for ¢ < 7,
i t H
f k() plt—s) ds = f {oc1+7e(s) o g f B(s — u) colo du} Blt—s) ext-9ds
0 0 0
¢ t
_ eat{a f B(t—s) e ds+[p(t) —T] — f [Bt—u) —T] e‘““du}
0 0
=p(t)et—I=p(t)-I
Hence (2.3.3), and likewise (2.3.3*) is satisfied for ¢ < T with k replaced by k.

Now repeat the process with 7 replaced by a larger value U, to arrive at a function k; satis-

fying (2.8.3) in ¢t < U. Then
p—I=kyxp on [O: T]»
so that 4 = ky — k, satisfies
Axp=0 on [0,T].
Hence, on [0, T7],
AxI =A% (p—pxky)

=Ad%p—(Adxp)xky =0,
t

so that f A)ds =0 (t< T).
0

Since A4 is left-continuous,
kolt) = kolt) (0<t<T),

and it follows that there exists a function k, satisfying (i), (ii) and (iii), whose restriction to
(0, T'is k4, for any 7" > 0, and which therefore satisfies (2.3.3) and (2.3.3*)for all ¢ > 0. More-
over, the argument just given shows that k is uniquely determined in terms of p by either of
the equations (2.3.3) or (2.8.3%).

Conversely, suppose that k satisfies (i), (ii) and (iii), and fix 7> 0. For a > 0, define

k,(t) = —oal+k(t) et + ocfot k(s) e~ ds,
and verify as before that k, satisfies (i), (ii) and (iii). Choose « so large that
(y(T))yy <0 (1=1,2,...,N).
Let u#; be any measure on (0, co] such that
pultyo0] = — (ky(0)s (0 <1< T),
and Ay; (7 = j) any totally finite measure on [0, c0) such that

Ayl0,8) = (Ru(t)y; (0<t<T).
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Then these measures satisfy the conditions of the structure theorem for p-matrices, and de-
termine a p-matrix p,. If

PT(t) = p.(t) e,
then p7 is a semi-p-matrix, and calculations like those just performed show that (2.3.3) and
(2.8.3*%) hold in ¢ € T with p replaced by p?.
Repeat the construction with T replaced by a larger value U, to obtain a semi-p-matrix pY
satisfying (2.3.3) and (2.8.3*) in ¢ < U. Then the continuous function

I@t) =pv@)-p*Q)
satisfies I = f:T(t—s) k(s)ds (0<t<T). |

Using any matrix norm, choose 8 so large that

1T
f ) ends < 3.
Then

T

f OT @) e~ de < f ) f 0' |F(—s)]. | k(s)| dse~?t ¢
<[Tirorenaf rg1ena

L(r
<3f, ropea
2J
Since I' is continuous, this means that I = 0 on [0, 77], so that
pU(t) =p"() (0<it<T).
Hence there exists a function p such that for all 7" > 0,
pit) =p*(t) (0<t<T),
and p is clearly the unique solution of (2.3.3), and of (2.3.3*), in ¢t > 0. Moreover, if

0<ty <ty <. <ty
then
F(tl, tz, “')tn; P) = F(tl) t2> ""tn; ptn> 2 0)

so that p is a semi-p-matrix, and the theorem is proved.

The theorem sets up a one-to-one correspondence between semi-p-matrices p and functions k
satisfying (i), (ii) and (iii), expressed by either of the equations (2.3.3) and (2.3.3*), which will
be called the canonical correspondence. The proof in fact yields rather more than is asserted. For
example, if two semi-p-matrices p,, p, correspond respectively to Ry, ky, then

(a) if py(t) =py(t) for t< T then 4=k,—k,
satisfies p1#d=0 on [0,T],
and the first uniqueness argument shows that 4 = 0 on (0, 7];

(b) if ky(t) = ky(t) for t< T then I'=p;—p,
satisfies I'=Ixk, on (0,T],
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and the second uniqueness argument shows that I"= 0 on [0, T']. Thus the canonical corre-
spondence is local, in the sense of the following theorem.

TueorEeM I11. Under the conditions of theorem 11,
(a) k(2) is uniquely determined by the values of p on (0,1), and
(b) p(2) is uniquely determined by the values of k on (0,t).

When 7 # j, k;; is positive and increasing, so that the finite positive limit

t N
exists. By (2.3.3%), bi5() =f Y pult—s) ky(s) ds,
01=1
and it follows from (2.1.10) that
pij(t) = thiy(0+) +o(2).

Hence the Doob-Kolmogorov limits (2.2.14) are given by
iy = kii(0+) (2 +)). (2.3.5)

The same result holds when ¢ =1, except that the derivative of p,; at 0 and the limit £,,(0) may
equal —oo.
2.4. Decompositions

In the theory of Markov chains, an important part is played by the first passage and last exit
decompositions .
P bij =Jis*bii = bu*gy (@ +J), (2.4.1)

where f;; and g;; are non-negative and locally integrable. These are usually proved by a ‘skeleton’
argument (cf. Chung 1967), but Kingman (1965) pointed out that they are simple consequences
of the fact that, in a Markov semigroup, the matrix

bii pij)
2.4.2
(Pn' bij (2.42)
is a p-matrix. In fact, if p is any (2 x 2) p-matrix, then (Kingman 1972, theorem 5.3)
. . D1o = fra#Pas = P11 % g1z (2.4.3)
where, in our present notation,
Jia =p1# ks, g1 = dkyp i py, (2.4.4)

and for @ = 1, 2, p,, is the p-function with canonical measure d£,,, and therefore satisfying
by = 1+pa'*koca' (2'4'5)

In (2.4.4) the asterisk denotes Stieltjes convolution:

(peat) () = [ ple=9)dk()

with the convention that £(0) = 0; note that if & is left-continuous,
Lxdk = k.

The fact that the elements f and g of the decompositions (2.4.3) themselves admit further
decompositions (2.4.4) is a crucial step in the solution of the Markov characterization problem.
It is not difficult to use theorem II to extend this result from p-matrices to semi-p-matrices, but
for our present purposes a rather more general result is needed.
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TrEOREM IV. Let p be a semi-p-matrix of order (m+n), k the matrix to which it corresponds, k° the
submatrix of k consisting of the first m rows and columns, and p° the semi-p-matrix of order m corresponding
to kO Then, fori < m <,

m o mtn

b= 2 X lﬁi’a*dkaﬂ*ﬁﬁj- (2.4.6)

a=1p=m+
Progf. Equation (2.3.3) shows that, for ¢ < m < J,

m+n

b = /El (kip ppy) + §+1 (Kip* pg;)

= /El (kg% pgs) + ¥y (say).
Hence glﬁga *Po; = ,5'2—1 (B # K% ppy) + gllﬁga *Y

= /;§1 (D5 —0ip) * pp; + ozall’?a * Yo

and therefore Lxpy

Il

m
Zl pga * waj
o=

m o mt+n

= 2 ! pga*l*dkaﬂ*pﬁj
a=1p=m+1

m  m+n

= 1'*‘ E E pga*dkuﬂ*p/)’j'

a=1pf=m+1

This is the integrated form of (2.4.6), which follows by continuity. Hence the proof is complete.
Taking the transpose of p, and interchanging m and n by the obvious re-labelling, we have the
dual form of (2.4.6):

m  mtn X
Piy= 2 X piakdk,pkpp, (2.4.7)
a=1pf=m+1

where p! corresponds to the submatrix k* consisting of the last # rows and columns of k. Clearly
(2.4.3) and (2.4.4) follow on setting m = n = 1.
In particular, applying the result to (2.4.2) we recover Jurkat’s result that (2.4.1) holds in
any M-semigroup, together with the refinement of the further decompositions of f;; and g;;.
There is another consequence of (2.3.3) which will be needed later. For s, ¢ > 0, the function

t
K(s,1) = f {k(s+x) — k(x)} dx (2.4.8)
0
is finite and continuous, and satisfies
K(s5, 1) — K(s1,85) — K(55, ty) + K(s3,41) > 0

whenever s; < s,, #; < t,. Hence there is a positive matrix—valued measure x on the positive
quadrant (0, c0)?, finite on bounded sets, and defined uniquely by the requirement that

©((0,5) % (0,8)) = K(s, 1) (2.4.9)

for all 5, £ > 0. (It may make this construction less mysterious to remark that, if k is absolutely
continuous with derivative h, then x has a density

k(dsdt) = h(s+1¢)dsdz.)
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From (2.4.8) and (2.4.9),

N “te(dudv) p(t—1) = [} thts2) = k() pt =)
0J0 0 0
— p(s+0)—p() —J;sk(s+x)p(t—x) dx

= P+0)=p(5) 1)~ [ B(w) (p(s —u+ ) = p(s-4) p(0)} i,
using (2.3.3). Holding ¢ fixed and writing

A@ = [ [(xtaudn p(t-1), BG) = pls+0)-p(9) p(0),

we have therefore
A=B—kx%B,
whence by (2.3.3%),
IxpxdA =pxA=pxB—(pxk)*B=1x%B,

so that B = pxdA.

Hence we have proved that, for any semi-p-matrix,

P+ =) p() = [ [ pls-u)w(dud) pe-), (2.4.10)

where k is defined in terms of the matrix k corresponding to p by (2.4.9) and (2.4.8).

3. APPLICATIONS TO M-SEMIGROUPS

The rest of this paper will be devoted to applying the theory of semi-p-matrices to the
determination of properties of the elements, and more generally the finite submatrices, of
M-semigroups. To this end, it will be assumed throughout that

P(t) = (pi(t);0,5€1)
satisfies (1.1.1) and (1.1.3). If J is any finite subset of J, p7 will devote the principal submatrix
p7(t) = (p(1); g€ J).
Since p7 is a semi-p-matrix, theorem II establishes the existence of the corresponding matrix
k7 (0) = (K(1); 4, jeJ)
such that p’ and k7 satisfy (2.3.3) and (2.3.3%).

3.1. Taboo semigroups

If His any subset of , there is an important semigroup with index set (I — H) which is obtained
from P by ‘forbidding transitions into H’. In the Markov case it is usual to define this taboo
semigroup either probabilistically (i.e. by considering certain measures on the space of functions
from [0, c0) into I) or by a slightly delicate limiting process. However, theorem II makes possible
a more direct and convenient definition, at least when H is finite. (When H is infinite, any
definition must take note of the intrinsic topology which P defines on / (Neveu 1961).)

Thus let H be any finite subset of 1. For any finite subset J disjoint from H, write

ak! = (K[, jed) (3.1.1)

J

28 Vol. 296, A.
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for the principal submatrix of k7 © # corresponding to J. Then the second part of theorem II
shows that, in the canonical correspondence, ;k’ corresponds to a unique semi-p-matrix

P’ = (api; 1, j€J).
THEOREM V. For any 1,5 ¢ H, the function pp;; = ppy; does not depend on J so long as
{ij}esJ<I-H.
Moreover, uP = (gpijs ,jel—H) (3.1.2)
is an M-semigroup with index set (1—H).
Proof. Letr¢ JUH, K = Ju{r} and k = kX*H_ Then
PEVH — [ 4 pKvH y

so that, for i, je JU H, Pij =0+ X (Piakay) + (pirkky)-
aeJUH

Moreover, (2.4.7) shows that bir= X P ¥dk . *p,,
aeJUH

where p, is the semi-p-function satisfying

br=1+p, *krr‘
HCDCC pij = 3,;]' + Z pia * (ka]’ + dkar *pr * k"j)
aeJUH
for ¢, jeJ U H, so that P = k4 dky % pp % by

In particular, restricting ¢ and j to J, we have
ukly = gkl +dpki *p,* gki, (3.1.3)
where b= 14p,% gkls.
Exactly similar calculations show that the submatrix
(utis; bj€J)
satisfies (2.8.3) with k given by the right-hand side of (3.1.3), and therefore
utly = uti;  (J€J), (3.1.4)

where K = J U {r}. Repeated application of (3.1.4) shows that the same equation holds for any
finite K with J < K < I— H. Hence, if J; and J, are finite subsets of I — H, with {i,j} < J; n J,,

then J JiuJ, J
uby = b’ = ubifs

and the first part of the theorem is proved.
Notice that we have established that, for any finite J, K with J < K < I— H, there is a com-
mutative diagram PEVH ( pKVH L, pK (, pK
(8.1.5)
PJUHH kI/VH _ HkJ PN HPJ

in which the double-ended arrows stand for the canonical correspondence and the single-ended
arrows indicate the taking of appropriate submatrices. Moreover, the proof of (3.1.5) depends
only on the fact that pX# is a semi-p-matrix.
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ON THE CHAPMAN-KOLMOGOROYV EQUATION 359

To complete the proof of the theorem, we have to show that 5 P, now well-defined by (3.1.2),
satisfies (1.1.1) on (I — H). For any finite J with {i,j} = J = I—H, the fact that yzp” is a semi-
p-matrix means, by (1.2.1) that

abii(s+1) = upli(s+8) > pr(s) abai(t)

= “E alia(9) Hpaj(t)'
Since J is arbitrary, abi(s+1t) = aeIZ_H abia(8) mbai(t). (3.1.6)
To prove the reverse inequality, let J be again a finite set disjoint from H, and use (2.3.3)
to give, for ¢, je J, by =0+ I KLHxp,
aeJUH

> 0+ ZJk{a“Haepaj.
ae

Hence p’ = I+ yk? % p’7 (3.1.7)
and (2.3.3%) implies that P’ #p7 > yp7 %I+ (gp’ - I)%p7,

t t
so that f apP’(s)ds < f . pJ(s)ds
0

for all ¢ > 0. Since ;k” is increasing, this implies that

uk? % gp? < gk7 *p’,
which substituted in (3.1.7) gives
p7 > I+ k! % gp” = yp’.

Therefore, choosing J to contain i and j, we have the important inequality
ubi < by (4 JEH). (3.1.8)
Now apply (2.4.10) to the semi-p-matrices xp” and p7VH to give, for ¢, je J = I-H,

mpi(s+1t) — E aPia(8) nPai(t) f fo o JHPW(J'“ u) gkap(dudv) ppo;(t—v)
<['f 5 pule=u elpduds) pyli—0
0J0a,ped
s
<[0f,. 3, el =) k() (1=
0J 0e,peTur
= pz‘j(‘g+ )— X pia(s) paj(t)'
aeJUH
Hence  py(s+1) — upu(s +1) > anJ {D:10(8) i (t) — 10 (8) HPw3(8)} +anHPw(5)Puj(t)-
Since J is arbitrary, and the expression in brackets is non-negative, J may be replaced by I—H,

pi(s+1) — ghy(s+1) 2 —aeIZH 1Pia(5) ubai(t) +u§_ Dia(8) Pai(?)

= — ZH bia(S) b ai(t) +pis(s +1).

ael —

to give

This is the reverse inequality to (3.1.6), showing that ;p satisfies (1.1.1), and completing the

proof of the theorem.
28-2


http://rsta.royalsocietypublishing.org/

'\

/N
AL A

=\
[

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

N

—%

A A

y \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

360 J. F. C. KINGMAN

Theorem V may be taken as the starting-point for a systematic theory of taboo semigroups
which closely parallels the classical one, and which in turn leads to the concept of dominance as
a relation between M-semigroups (Neveu 1961). This line of argument will not be pursued here;
for the present purposes the most important consequence of theorem V is a subtler form of the
Lévy dichotomy.

Corollary. Each of the non-diagonal elements of the matrix k7 derived from an M-semigroup is either
always or never zero in (0, c0). :

Proof. If i and j are distinct elements of the finite set J, write H = J —{i, j}, and apply Chung’s
form of the Lévy dichotomy (Chung 1963, theorem 10.1) to the M-semigroup zp. This shows
that gp,; is either always or never zero. By the construction of the taboo semigroup P, the

P = (Ilpi'i sz’j)

wbii  HPjj

semi-p-matrix

Bl i) Kl K
corresponds to R =\ g )
7 17

Hence, by (2.4.6) wbi; = mogbu® Ak * gpj;.

Since the first and third elements on the right-hand side are semi-p-functions, they are strictly
positive. Hence if jp;;(t) vanishes for some ¢ > 0, it vanishes for all ¢ > 0, and £}; is identically
zero. On the other hand, if ;p,;(f) > 0, then £/;(¢) > 0 (since £} is increasing) so that the strict
positivity of zp;(¢) for some, and then for all, ¢ > 0 entails the same for £}].

3.2. Properties of submatrices of M-semigroups

The corollary to theorem V shows that the submatrix p” of the M-semigroup P has at least
one property not enjoyed by all semi-p-matrices, and that this property is best expressed in terms
of the corresponding k7. In this section further such properties are established; these will later
be seen to be characteristic of semi-p-matrices derived from M-semigroups.

In this section P will be a fixed M-semigroup with index set , .J will be a fixed finite subset of

I, and p=p’, k=Fk.

THEOREM V1. There exists a matrix h, whose elements hy; (i, je J) are lower semicontinuous functions

on (0, 00), such that :
k(1) — k(s) =f h(x)ds (0<s< i< o). (3.2.1)

Moreover, any element hy; which is not identically zero satisfies

hif(x) > 0 (x> 0),  hy(x) > el (x> 1) (3.2.2)
Jfor some constant f.

Proof. For r¢ J, apply theorem IV to the semi-p-matrix p7*® to give, for ¢, je J,
bir = o%, Dia*Akiy ke pyy  pyy = ﬂal’r * kL Py (3.2.3)
when k" = k7", p. = ,p,.. Then
pis(s +1) "E]!’w(f)l’af(t) = EJ/M(«V)I’M(‘)
= TE (Pia % dRzr sk py) (5) (Bp o AT5 % pgy) (2),


http://rsta.royalsocietypublishing.org/

AL A

'\
J= \

o
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON THE CHAPMAN-KOLMOGOROV EQUATION 361
so that Pls+1)—p(s) p(t) = f i f *p(s—u) H(u, ) p(t—v) dudo, (3.2.4)
0J0
where Hj(u,v) = % (dk5 % p,) (w) (p.*dA7;) (v). (3.2.5)
réJ

Comparing (3.2.4) with (2.4.10), we have

f:f:P(s—u) H(u, v) p(t—v) du do ==f:f:p(s——u)ic(dudv)p(t—v),

Hence, with ¢ fixed, the function

é(5) =f:f:H(u,v)p(t—v) dudv-—f:f:k(dudv)p(t—v) dv

satisfies p * d¢ = 0, whence
§=Txdg = (p—kxp)xdp=0

and therefore fsft H(u,v) p(t—v)dudv = fsftx(du dv) p(t—v) dv.
oJo 0Jo

Repeating the argument with s fixed,

f:f;H(u,v) dudo =f:f;x(dudv) =f;{k(s+x) — k(x)}dx.
Hence f: H(u,v) du = k(s +v) — k(v)

for all 5 and almost all v. Since H is clearly measurable this holds for almost all (s,4). There-
fore k is absolutely continuous, and there exists h > 0 satisfying (3.2.1). Hence

f: H(u,v)du = ]:h(u+v) du

for almost all (s, v), so that H(u+v) = h(u+v)

for almost all (u,v). In particular, for almost all ¢,
t
th(f) = f H(u, ) du
0

= (2 (dkf, % p. % p, % dky,) 5 4, jeT).

reJ

Since we may vary h on a null set without affecting (3.2.1), we can and will define % by
hig(t) = £ 5 (B p, e, % L) (1) (3.2.6)
reJ

in the confidence that (3.2.1) holds.

That A;; is lower semicontinuous now follows at once from Fatou’s lemma. To complete the
proof, suppose that, for a particular pair ¢, j (equal or unequal), %;; is not identically zero. Choose
T¢JSO that dk’{y’*ﬁr*[’r*dk;;
is not identically zero. Then the functions £, and £7; are not identically zero, and the corollary
to theorem V shows that they are strictly positive on (0, 0), so that the increasing function

I = K% dk,
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is strictly positive on (0, 00). Moreover, since g, is a semi-p-function, 77 = p, * p, is strictly positive

on (0, 00), so that

hy(t) > 11 f a(t—s)di(s) > 0 (3.2.7)
[0,¢)

>

for all ¢ > 0. Again, since p, is a semi-p-function,

Po(s+1) 2 pr(5) (D)

from which it follows easily that, for some y > 0,
p(t) = 3t (1> 0).
Hence m(t) = e,
and (3.2.7) implies that, for ¢ > 1,
By) > 0 = enoadis) > g e > e
(0, 8)

for a suitable choice of . Hence the theorem is proved.

3.3. Property M

We are now at last in a position to answer the question posed in §1.2; which functions
p: (0,00) = (0,00) have property M, the property of being expressible as a diagonal element
p;; in some M-semigroup ?

Tueorem VII. A function p has property M if and only if it satisfies the Volterra equation

t
20) = 1+ f p(t—s) k(s) ds (3.3.1)

0

Jfor some function k which is either constant or satisfies

t
k() — k(s) = f h(x) dx, (3.3.2)
where
(1) A s strictly positive (but may equal + o00) and lower semicontinuous in (0, c0),
(ii) h(x) > e~P® (x > 1) for some constant f3, and

¢
(iif) f xh(x) dx < oo for all t > 0.
0

Proof. The necessity of these conditions is just the assertion of theorem VI when N = 1. To
prove the sufficiency, note first that, if £ is a constant, then p(¢) = e*® trivially has property M.
Excluding this trivial case, assume that p satisfies (3.3.1), where £ satisfies (3.3.2) and 4 satisfies
(1), (ii) and (iii). Since (iii) implies that 4 is finite almost everywhere, we may choose £ such that
h(§) < .

The functions H,(t) = inf {h(x)+n|x—1|}

0<x<cwo
are continuous and satisfy
0 < Hy(2) < Hy(t) < ... < H,(t) > k(1)
and H,(t) < h(E) +nlE—t]
(cf. Kingman 1972, p. 132). Hence the continuous functions
kl(t) = Hl(t) e—t)
hy(t) = H,(8) e~ — H,_,(8) e (n > 2),
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ON THE CHAPMAN-KOMOGOROV EQUATION 363
satisfy h(t) = ni:;l b (1), (3.3.3)

f 0°° b () dt < oo, (3.3.4)
and ho(8) = H,(t) e~tin (1 —e~tintn=1),

Hence (using the easily verified fact that (ii) implies that H;(t) > e~#* for sufficiently large ¢)
k., satisfies all the conditions assumed of %, together with (3.3.4). Define

t
ko(t) = k(1) 2—m +f by (%) dax;
1
then £, is continuous, bounded and increasing, and
k= 3k, (3.3.5)

Let p,, be the semi-p-function satisfying (3.8.1) with £ replaced by £,. Then, for @ > 0, the semi-
p-function p,,(t) e~ corresponds to the function

¢
kpo(t) = —a+k,(t) et + ocf k,(s) e~*sds
0

t
otk (0) + f ho(s) €= ds.
0

Choose @ = a,, so large that kno(t) <0 forall ¢>0.
Then Pa(t) et
is a p-function, and its canonical measure has density

b, () e=ont,

Hence the Markov characterization theorem (Kingman 1972, theorem 6.1) shows that there is
a Markov semigroup P™ (whose index set may be taken to consist of the non-negative integers)

such that
AR = pult) e~

Then P®)(t) = PU(f) eont

is an M-semigroup with , PR(E) = p,(2). (3.3.6)
Let I consist of 0 and the pairs (a,7) (a,n = 1,2, 3, ...). Define functions p;; (, jeI) by
Doo = b»

Do, g = D*EGY,

p(a,m),o =fa(c:)n) * P,
p(a,m),(ﬂ, n) = Smn[’%' +ﬂgb) *p *ggb),

where f{ and gy are respectively the functions satisfying

D) = SR H PR, D = PR g

(3.3.7)


http://rsta.royalsocietypublishing.org/

'\
A

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

2
AL A

SOCIETY

Y o ¥

SOCIETY

OF

A

A

OF

Downloaded from rsta.royalsocietypublishing.org
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The theorem will be proved ifit can be shown that the functions p,; satisfy (1.1.1), for then (1.1.3)
is clearly satisfied, and (p,;) is an M-semigroup with po, = p. We shall exhibit only one of the
four different calculations needed to verify (1.1.1).

Applying the special case N = 1 of (2.4.10) to p%’, we have

(s +£) — P (5) P (1) = f f 200 (5 — ) h, (14 0) (£ —v) du do.
The left-hand side is equal to

5 A0 = T (o0 ai?) () U wA) (1),

so that, for almost all (s, #) hy(s+t) = 2 200 (5) f30(2).

Hence % pou(s) buo(t) = p(s)p(t) + S (pret) (5) (SB*0) (0

a,n=1

() p(2) ffps—— {ég u) fim (v )} (t—v) dudv
ffP(S— § hy(u+v) p(t—v) dudv

— () p0) +f0f0p(s—u) h(u+0) p(t—0) dudv
= p(s+1) = poo(s+1).

This proves the case ¢ =j = 0 of (1.1.1); the remaining cases i = 0, j = (f,n); i = (a,n),j = 0;
i = (a,n),j = (B, n) follow by very similar calculations, and the proofis complete.

Thus, in the special case N = 1, the converse of theorem VI is true. However, theorem VII
gives an effective way of testing a function p for property M, once (3.3.1) has been solved for &:

(1) check that £ is increasing and absolutely continuous,

(2) compute the maximal lower semicontinuous density £ for £ (cf. Kingman 1971),

(3) unless & vanishes identically, check that £ is strictly positive, and at most exponentially
small at infinity.

The converse of theorem VII is in fact true for general N, and therefore provides a similar
recipe for testing a given (N x N) matrix-valued function for the possibility that it is a principal
submatrix of some M-semigroup.

TueorREM VIII. Suppose that hy; (i,j = 1,2, ..., N), are lower semicontinuous functions, each of which
is either identically zero or satisfies (8.2.2), that the (N x N) matrix-valued function k on (0, 00) is locally
integrable and satisfies (3.2.1) with h = (h;;) and that p = (p;;) is the semi-p-matrix corresponding lo k
in the canonical correspondence. Then there is an M-semigroup P with index set {1, 2,3, ...} such that

(P(t))ij =pz’j(t) (Z’J = 1’ 27 LARS) N) (3.3.8)

Proof. Write I, = {1,2, ..., N} and for each i, je I, construct a countably infinite set I;; such
that the different I;; are dlSJOlnl subsets of {N+ 1, N+2, ...} and

I=Iu U I;={1,2,3,...}.

i,j€l,


http://rsta.royalsocietypublishing.org/

'y
N

Iam \

L A

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A A

l am \

/ \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ON THE CHAPMAN-KOMOGOROV EQUATION 365

We attempt to extend the semi-p-matrix p = (py; 7, jel,) to an M-semigroup P = (psjrt,J€1)

by setting
bio =P8 (2€l),

pa] =foc*4bkj (OLEI,,;;C),
paﬂ = Top 37‘k 6@‘1 +fa *Pia’ *8p (OL EIM’ ﬂ EIﬂ)’

for i, j, k, le I,. We assert that P satisfies (1.1.1) so long as, for s,t > 0, ¢, je 1,

Byle+) = 3 800000, (3..9)
Su(s+1t) = :A:,_ Top(8) f3(t)  (xely), (3.3.10)
go(s+1t) = ﬁg}ﬂgﬂ( ) ga(8)  (2€lyy), (3.3.11)
and Top(s+1) = yév“z,,"“’( ) mp(t) (o Bely). (3.3.12)

The computations needed to justify this assertion fall again into four groups, of which one will
be exhibited; for a € I,

bapab(s)pbj() Zl’«z(‘)l’zy(t) + B X bap(s) bt

»mGIoﬂEIlm

= l§1 (foc '*plcl) (5) plc?'(t) + zllm ﬂ“ﬂ(‘s) (fﬂ *'pkf) (t)

5% (fakbarg) ) Fpxbuy) ()

Lm=1 ﬂez,,,.

= 3 [ ulo= 0 ule) dups )+ 3 7o) [ 50 it —) o

lm J f ffa s —u) pra(u—w) (ﬁzlh‘gﬁ(w)ﬁ(v))pmj(t_v) dudwdy
- f Jals—u) ( % pia(u) pia‘(t)) du +f Sals+v) prs(E—v) dv

0 I=1 0

+fsfa(s—u) (f“ft I‘V; Bl 0) g (0+) 1= dwdv) du
ffw‘“ (p(u ffpu w) h(w+v) p(t— v)dwdv) du

kj

+f fa(s_u)plcj(u'*'t) du
—t

= fitf“(s_u) .plcj(u +t)du = paj(5+ ).

This proves that (1.1.1) holds for z¢ 1y, je I,; the other three cases are similar. To prove the
theorem, it therefore suffices to choose the f; g, 7 so that (3.3.9), (3.3.10), (3.3.11), (3.3.12) and

are satisfied, since then P will be an M-semigroup satisfying (3.3.8).

29 Vol. 276. A.
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Now confine attention to a particular pair ¢,j € [y, and write I; = I;;, h = h;;. Because of what

has been assumed about %, theorem VII shows that there is an M-semigroup P! with index
set {0} U I, such that p = p}, satisfies (3.3.1) and (3.3.2). Define

Jo=Sin 8a=8bas Tap=abup
for a, feI;;. Then (3.3.12) and (3.3.13) follow from theorem V, and
Do =Saby Pha=D*E0
Hence p(s+1)—p(s)p(8) = R *8a) () (fup) (),
whence (3.3.9) follows by now familiar calculations.

It remains only to prove (3.3.10) and (3.3.11). Let J be any finite subset of 7,, and k the matrix
corresponding to the semi-p-matrix

P = (B pe U (3.
Then, for o, feJ, Py = Bupt 3, (Bhkhy) + (kg

so that, recalling the definition of the taboo function 7,
Z [’in * Typ = (1 * ﬂaﬂ) + Z (p}t'y * k'yv] * ﬂqﬂ) +ﬁ}ca * Z (kav; * 7’7],3)
yedJ Yy ned neJ

= (1 '*77“/3) +y§]ﬁ}‘y* (77,},,3—67,/3) + (fa*p*”g.’ka”*ﬂmg).
Hence, using (2.4.7), we have
1 *p}tﬂ = (1 *ﬂaﬂ) + (fac *ﬁ* 1 *gﬂ),
so that Dap = Taptfoa®p*gp (3.3.14)
Since this is true for all &, € J, and J is any finite subset of /;, it is true for all &, f € I,. Therefore
(fap) (s+1) = pas(s+7)
= 3 P30(5) Phot) +£1a(5) 10
= ﬂg‘; (Tap+Sa b35) (5) Dpa(t) + (fa 2 p) (5) p(2)s

= 3 7)) + [ £20) (3 2Aels 1) 2ho0) +£(s =) p(D)}

= 5 mag(5)Pha0) + [ ful) plo-+t 1) .

Hence [ rtpsr -y du= 5 7y 00
t t
so that f PACEESVOEE LN f Jilt=0)p(0) v

Inverting the convolution transform, we have
fa(s + t) = /J'EI ﬂaﬂ(s)ﬂ(t)a
€1y

which is (3.3.10). The dual equation (3.3.11) is proved in the same way, and the theorem is
therefore proved.
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8.4. The localization principle

In order to establish the localization principle described in § 1.3, it is first necessary to extend
theorem VIII to give the conditions under which P may be chosen to be, notjust an M-semigroup,
but a Markov semigroup. The next theorem justifies an assertion to this end made without
proof in (Kingman 1972).

THeOREM IX. Under the conditions of theorem VIII, the M-semigroup P may be chosen to be a Markov
semigroup if and only if k()1 <0 (3.4.1)
Sorallt > 0.

Proof. 1t is clear from the proof of theorem II that (3.4.1) is the necessary and sufficient con-
dition for the semi-p-matrix p to be a p-matrix. Hence (3.4.1) is certainly necessary for P to

be a Markov semigroup.
Conversely, suppose that (3.4.1) holds, so that p is a p-matrix, and in particular

N
2 py(t) <1
Jj=1

forallt>0andallzin 1

sl =1 (L<i<N)

= nél Z ik, (1) brey ey () - b1y 16, () (@ = N+1),

N

¢ < N. For any 4 > 0, define

where P = (p,;) is the M-semigroup constructed in the proof of theorem VIII, and the second
summation extends over all £y, %y, ..., &k, ; = N+1and £k, < N. Then (1.1.1) shows that

x(28) < xi(h)

and that x5 () > 3 piy(h) %,(h).
i=1
Iterating this inequality, using (1.1.1) again, we have
x;(h) = j§1 Dj(hn) x;(R).
Hence x%; = limx,(277)
P—>00

exists, and setting » = [¢/k] and using the continuity of p;;, we have
X 2 ‘leif(t) X
j=

for all ¢ > 0. This shows that x; < co except perhaps for values of j with

j > N+ 1, pw(t) = 0 for a.].l i < .N.

Thus, if Z, ={j;x; = 0},
then P =0 (i¢Zy,jeZ,).
Similarly, if Zy = {k;x; = 0},
then b =0(ieZy, j¢Zy).

29-2
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368 J. F. C. KINGMAN
Now define
D3(t) = py (@) a5lx; (5 ¢Zy U Zy)
=1 (i=jeZyuZy,)
=0 otherwise.

Then it is trivial to check that P+ is a Markov semigroup, and since #; = 1 for ¢ < N it satisfies
(3.3.8).

TuaeEOREM X. Let P be an M-semigroup with index set I, T a positive number, and S a finite subset of

Ix 1. Then there exists a constant & and a Markov semigroup P on I, such that
- pis(8) = i (1) e (3.4.2)
or (i, 7) €S, t < T.

Proof. Since S < I x I is finite, there is a finite J < I with § < J x J, and it clearly suffices to
prove (3.4.2) for ¢, je J. Since the case when [ is finite is trivial, there is no loss of generality
in supposing that

I1={1,2,38,...}, J={1,2,...,N}
for some finite N. Let p=p" =(pyi,j€J),

and let k correspond to p in the canonical correspondence. Then, as in the proof of theorem II,

p.(t) =p() e

the semi-p-matrix

t
corresponds to k,(t) = —al+k(t)e*t+a f k(s) e~ ds.
0
Choose « so large that all the elements of
‘ .
k(T)1=—al+{k(T)1}e" +f {k(s) 1} e—sds
0
are strictly negative.
Since p, is a submatrix of the M-semigroup P(f) e~*, k, satisfies the conditions described in
theorem VI, and it is therefore clear that we can define  in such a way that
(a) k(t) = k,(t) fort< T,
() k()1 <0 fort> 0,
(¢c) k satisfies the conditions of theorem V1.
Theorem III and (a) now imply (3.4.2), and theorems VIII and IX imply the existence of a
Markov semigroup P with 5= b7
Hence the theorem is proved.
The most important case is that in which § has a single element (7,5), where i = jor ¢ & J.

Corollary. If p,; is any element, diagonal or non-diagonal, of an M-semigroup, then on any finite interval
it coincides with the product of an exponential function and an element of a Markov semigroup.

Thus any local property of Markov transition functions (such as the continuous differentiability
asserted by Ornstein’s theorem) extends automatically to the elements of M-semigroups, wild
as well as tame. Moreover, the same is true of finite collections of such elements.

It is important to note that the converse of theorem X is false, even in the simplest case of
a single diagonal element, and even in the Markov case. For example, let p be the p-function
corresponding to

k(t) = - f " et dy.
t
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Then p does not have property M because (3.2.2) is violated, but for any finite 7 there is a

p-function with property M, for instance that corresponding to

k) == [Teds (1<)

= —-J.we“wz dxe D (¢> T),
which agrees with p on [0, 7.
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